Impeccable esthetic results with ceramic restorations

By Dr. Nelson Geovane Massing, Brazil, Passo Fundo, Brazil, and Alexandre Santos, Brazil

The aim of any restorative treatment in anterior teeth is to re-establish proper function and a natural-looking smile. In addition to ensuring the function and longevity of the restoration, the esthetic expectations of the patient have to be fulfilled.

Materials that are based on biomimetic principles allow the natural teeth to be faithfully reproduced in many different clinical situations. Furthermore, biomechanical aspects and light-optical characteristics have to be taken into consideration in the restoration process.

Clinical case study

The 55-year-old patient requested an esthetic makeover for his front teeth. The slight gap (diastema) in the upper anterior dentition, which was visible when he smiled, displeased him in particular. The clinical examination also revealed dark stains on tooth 21, which had been caused by endodontic treatment and composite restorations (Figs 1 and 2). Models were created and photos taken in order to thoroughly analyze the existing situation and plan the anticipated result. The photographic documentation included portrait pictures of the patient as well as intraoral close-ups.

Fig. 1. Preoperative smile: The patient was dissatisfied with the a 12 ligation of his frontal teeth.

Fig. 2. Close-up. Slight gaps are visible between the front teeth, and tooth 21 is discoloured.

Selection of the restorative material

A suitable restorative system was chosen on the basis of general esthetic and functional considerations. In the following case, we decided to take advantage of the outstanding esthetic potential of feldspathic ceramic and the excellent biomechanical performance of the adhesive cementation protocol on natural tooth structure.

State-of-the-art adhesive luting techniques involving ceramic conditioning with hydrofluoric acid and silane produce reliable bonds between ceramic restorations and natural dentition. Moreover, adhesive cementation requires less invasive preparation of the tooth structure and it imparts the restoration with excellent biomechanical properties.

Preparation and impression taking

As a result of sophisticated developments in dental ceramics and adhesive dentistry, it is now possible to fabricate delicate, ultra-thin restorations showing outstanding translucent properties. In the present case, teeth 12, 11, 21 and 22 were prepared to receive veneers. Since tooth 11 showed some discoloration, more tooth structure was removed from it during preparation (removal of approximately 1 mm of tooth structure; Fig. 3). The other three teeth required only minimal preparation. The canines 15 and 25 remained untouched, since they were to be restored with veneers that do not require any preparation. A silicone matrix made according to the diagnostic wax-up was used as an orientation aid during preparation. Tooth preparation was confined to the dental enamel in order to ensure an effective and long-lasting adhesive bond.

The impression was taken with an addition silicone (Virtual®) using the double-cord technique. Subsequently, the prepared teeth were photographed together with the shade guide samples in order to ensure the best possible shade match in collaboration with the dental laboratory. The matrix which had been fabricated according to the diagnostic wax-up was used to produce the intraoral mock-up. The composite material (System® C&B) was used for this purpose and for fashioning the provisional restoration.

Fig. 3. Determination of the tooth shade

Fig. 4. After minimally invasive preparation of teeth 12 to 22

Fig. 5. Custom-layered veneers in the laboratory on refractory dies

Fig. 6. The veneers were made of fluorapatite leucite glass-ceramic (IPS dSIGN). As a result, light-optical qualities that are similar to those of natural teeth were achieved.

Fig. 8: The fit of the individual veneers was checked in the mouth of the patient.

The impression was taken with an addition silicone (Virtual®) using the double-cord technique. Subsequently, the prepared teeth were photographed together with the shade guide samples in order to ensure the best possible shade match in collaboration with the dental laboratory. The matrix which had been fabricated according to the diagnostic wax-up was used to produce the intraoral mock-up. The composite material (System® C&B) was used for this purpose and for fashioning the provisional restoration.

Fig. 7. The delicate ceramic veneers were prepared for seating.

Fig. 9. The individual veneers were checked in the mouth of the patient.
Tetric® N-Ceram Bulk Fill
The nano-optimized 4-mm composite

Discover the new time-saving composite

4 mm to success
- Bulk filling is possible due to Ivocerin®, the patented light initiator
- Special filler technology ensures low shrinkage stress
- Esthetic results are achieved quickly and efficiently in the posterior region
In the dental laboratory

The ceramic restorations were created on a refractory model using a fluorapatite leucite glass-ceramic (IPS eLCE®). Prior to this step, we selected the appropriate ceramic layering materials with the help of the shade determination photos. Then the veneers were conventionally layered on refractory dies. After the firing process, the restorations were carefully finished. Subsequently, the delicate ceramic veneers were prepared for placement (Figs 5 to 7).

Placement

The provisional restorations were removed and the prepared teeth were cleaned. Then the veneers were tried in the mouth (Fig. 8).

Try-in sequence:
- Dry try-in of each individual restoration for the inspection of fit
- Dry try-in of all the restorations together in order to check the proximal contacts
- Try-in of the restorations with glycerine paste (Variolink® N Try-In) for determining the shade of the luting composite

It is of utmost importance to try in the restorations with a try-in paste in order to select the most suitable shade of the luting composite. In principle, a translucent material is selected for cementing ultra-thin veneers (for example: Variolink N Clear Veneer), since the natural tooth structure and the restoration are expected to produce the tooth shade. Nevertheless, if the shade needs to be specially adjusted, try-in pastes in other shades can be tested and used.

Once the luting composite had been selected, the try-in paste was rinsed off with water and the restorations were conditioned with nine-percent hydrofluoric acid (HF) for 90 seconds.

Then they were thoroughly rinsed with air-water spray. The surfaces were finished by polishing with a diamond polishing system (OptraFine®). The surfaces were finished by moving from the restoration to the tooth structure in order to prevent any damage being done to the natural dental enamel (Figs 9 and 10).

The restorations were seated in the dental laboratory, the provisional restorations were removed and the prepared teeth were cleaned. Then the veneers received the ultra-thin veneers, since the canines did not require preparation before they received the ultra-thin veneers, the transitions between the restorations and the teeth had to be lightly finished with a diamond polishing system (Optifine®). The surfaces were finished by moving from the restoration to the tooth structure in order to prevent any damage being done to the natural dental enamel (Figs 9 and 10).

Conclusion

The adhesive cementation of ceramic restorations offers a proven treatment strategy, which provides excellent biomechanical and esthetic results. In the described case, the natural-looking and esthetic result speaks volumes. A satisfied patient with a beaming smile was released from the dental practice (Figs 11 to 13).